19,533 research outputs found

    Observational Constraints on Superbubble X-ray Energy Budgets

    Full text link
    The hot, X-ray-emitting gas in superbubbles imparts energy and enriched material to the interstellar medium (ISM) and generates the hot ionized medium, the ISM's high-temperature component. The evolution of superbubble energy budgets is not well understood, however, and the processes responsible for enhanced X-ray emission in superbubbles remain a matter of debate. We present Chandra ACIS-S observations of two X-ray-bright superbubbles in the Large Magellanic Cloud (LMC), DEM L50 (N186) and DEM L152 (N44), with an emphasis on disentangling the true superbubble X-ray emission from non-related diffuse emission and determining the spatial origin and spectral variation of the X-ray emission. An examination of the superbubble energy budgets shows that on the order of 50% of the X-ray emission comes from regions associated with supernova remnant (SNR) impacts. We find some evidence of mass-loading due to swept-up clouds and metallicity enrichment, but neither mechanism provides a significant contribution to the X-ray luminosities. We also find that one of the superbubbles, DEM L50, is likely not in collisional ionization equilibrium. We compare our observations to the predictions of the standard Weaver et al. model and to 1-D hydrodynamic simulations including cavity supernova impacts on the shell walls. Our observations show that mass-loading due to thermal evaporation from the shell walls and SNR impacts are the dominant source of enhanced X-ray luminosities in superbubbles. These two processes should affect most superbubbles, and their contribution to the X-ray luminosity must be considered when determining the energy available for transport to the ISM.Comment: 25 pages, 11 figures, accepted for publication in Ap

    Surface modification after ethanol wet milling: A comparison between pristine glasses produced from natural minerals and analytical grade raw materials

    Get PDF
    Four glass compositions were produced taking into account different theoretical Leucite (KAlSi2O6)/Bioglass 45S5 (45% SiO2, 24.5% Na2O, 24.5% CaO, 6% P2O5) ratios using analytical grade reagents only; and replacing some of the reagents by natural minerals, all that were found to be bioactive when they were transformed to glass ceramics. Glasses of particle size below 174 μm were wet milled using ethanol in a high energy planetary ball mill. After wet milling, samples with 25 and 30% of theoretical Leucite content using reagents grade raw materials showed a higher dissolution rate in comparison to the same glasses made from natural mineral, while no differences were found on glasses with 40 and 50% of Leucite theoretical content. Samples with higher dissolution showed a crystalline carbonate phase named Pirssonite on its surface, while on the rest of samples amorphous carbonates were present.Fil: Stábile, Franco Matías. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; ArgentinaFil: Rodríguez Aguado, Elena. Universidad de Málaga; EspañaFil: Rodríguez Castellón, Enrique. Universidad de Málaga; EspañaFil: Volzone, Cristina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentin

    Discrete Moyal-type representations for a spin

    Get PDF
    In Moyal’s formulation of quantum mechanics, a quantum spin s is described in terms of continuous symbols, i.e., by smooth functions on a two-dimensional sphere. Such prescriptions to associate operators with Wigner functions, P or Q symbols, are conveniently expressed in terms of operator kernels satisfying the Stratonovich-Weyl postulates. In analogy to this approach, a discrete Moyal formalism is defined on the basis of a modified set of postulates. It is shown that appropriately modified postulates single out a well-defined set of kernels that give rise to discrete symbols. Now operators are represented by functions taking values on (2s+1)2 points of the sphere. The discrete symbols contain no redundant information, contrary to the continuous ones. The properties of the resulting discrete Moyal formalism for a quantum spin are worked out in detail and compared to the continuous formalism

    Anthropogenic Harvesting Pressure and Changes in Life History: Insights from a Rocky Intertidal Limpet

    No full text
    The importance of large breeding individuals for maintaining the health of marine fish and invertebrate populations has long been recognized. Unfortunately, decades of human harvesting that preferentially remove larger individuals have led to drastic reductions in body sizes of many of these species. Such size-selective harvesting is particularly worrisome for sequentially hermaphroditic species where the larger size classes are composed primarily of one sex. Whether these species can maintain stable sex ratios under sustained harvesting pressure depends on the level of plasticity of their life-history traits. Here, we show that populations of a marine limpet (Lottia gigantea) can adjust a fundamental aspect of their life history (the timing of sex change) when subjected to size-selective harvesting. As predicted by theoretical models, individuals from harvested populations change sex at smaller sizes and grow at slower rates compared to individuals from protected populations. In addition, the relative size at which the change from male to female occurs remains constant (?0.75; size at sex change/maximum size) across populations, regardless of harvesting pressure. Our results show that population-level demographic and life-history data, in conjunction with existing theory, can be sufficient to predict the responses of sequential hermaphrodites to harvesting pressure. Furthermore, they suggest such species can potentially adapt to size-selective harvesting

    Plasmon excitations in graphitic carbon spheres

    Get PDF
    ©1998 The American Physical Society. The electronic version of this article is the complete one and can be found online at: http://link.aps.org/doi/10.1103/PhysRevB.57.15599DOI: 10.1103/PhysRevB.57.15599Electron energy loss spectroscopy in a high-resolution transmission electron microscope has recently been used with success to characterize the electronic properties of closed cage nanometer-size graphitic particles. In the plasmon region, the experimental data reveal interesting size-dependent variations, which are not yet fully understood. The difficulties encountered in the interpretation of the spectra are principally due to the lack of a complete theoretical treatment of the anisotropic dielectric response in nanometer-size particles. In order to obtain a better understanding of the experimental data we propose a model based on nonrelativistic local dielectric response theory for electrons penetrating through a nested concentric-shell fullerene or the so-called ‘‘carbon onion.’’ The anisotropy of the electronic properties of the sphere is taken into account via the frequency-dependent dielectric tensor of graphite. The model can be applied to simulate electron energy loss spectra as well as line scans through energy filtered images and allows thus a direct comparison to experimental data

    The effects of subsampling and between-haul variation on the size-selectivity estimation of Chilean hake (Merluccius gayi gayi)

    Get PDF
    Using the data collected in a size selectivity experiment on Chilean hake (Merluccius gayi gayi) carried out in 2000, the selectivity parameters for four codend mesh sizes (100, 110, 130, and 140 mm of mesh size opening) were estimated and modelled by the SELECT model. These analyses included considerations of the sampling proportions of the catch in the codend and cover. Furthermore, the analyses took into account between-haul variation. The l(50) values were 30.8, 29.9, 30.0, and 41.2 cm of total length, respectively, values lower than the estimates obtained from previous studies. The contribution of explanatory variables to the selectivity model was also tested in order to determine the role of mesh size, catch size (in number), and towing speed. Increases in catch size and in towing speed were accompanied by decreases in the l(50) estimates. These results demonstrate how incorporation of subsampling effect and explanatory variables to model between-haul variation can improve selectivity estimates and management of a valuable resource

    Tribological behaviour of polyalphaolefins: wear and rolling contact fatigue tests

    Get PDF
    Polyalphaolefin fluids are gaining rapid acceptance as high-performance lubricants and functional fluids because they have certain inherent, and highly desirable, characteristics relative to mineral oils. One of these characteristics is their low toxicity. It combined with excellent viscometrics and lubricity, have made low-viscosity PAO fluids an important component in lubricant formulations. Typical data found in product specifications for lubricants are the kinematic viscosity and the viscosity index. These values do not give enough information to choose the optimum lubricant for a lubricated contact. In mechanical systems take place rolling, sliding and rolling/sliding contacts, therefore lubricants have to work the best possible in these operation conditions. In this study are experimentally determined the L50, L10 and Weibull´s slope () of polyalphaolefins with two different viscosities. This test was made on a four-ball machine (Stanhope Seta). Wear test also was made on a four-ball tester (Roxana) in order to measure the wear scar diameter (WSD), and the flash temperature parameter (FTP). Lubricants were identified through infrared spectroscopy, and ball´s pittings were observed with SEM
    corecore